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Abstract 

 

We address a combinatorial proposition for the n-sphere and a corresponding proposition in 

inversive geometry on the n-sphere, and demonstrate the intimate connection between them. 

Specifically, in terms of combinatorial geometry, we show that any coloring of the n-sphere by 

n+3 colors must (n+2)-color some (n-1)-sphere. In regard to inversive geometry, we characterize 

the structure of the class of smallest subsets of the n-sphere that has the property that if T is a 

well-defined function of the n-sphere that preserves (n–1)-spheres and if the image of T contains 

a member of this class, T must be an inversive transformation. Lastly, we demonstrate that the 

combinatorial theorem is equivalent to the theorem that defines this class of sets. 
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Open Problem 

 

For natural numbers k and m, where k ≥ 4 and m ≥ 5, consider the m-coloring of the 2-

sphere which has the property that no circle on the sphere meets more than k-many colors. We 

count “circles” in a logical way, where if given set of colors actually occurs on some circle, we 

say that the corresponding set of integers – the integer names of the colors on that circle – is a 

“circle” that is colored by that set. Thus for example, if some coloring 3-colors a circle with 

colors k1, k2, and k3, we say that the triple (k1, k2, k3) is a 3-colored circle. Any count of circles, 

in this sense, refers to a count not of the underlying circles, but of the corresponding sets of 

colors. In these terms, the combinatorial proposition stated above is equivalent to “Prop: every 5-

coloring of the 2-sphere must have a colored 4-circle.” 

 

 Proof of this corollary. Let the colors be 1, 2, 3, 4, and 5. There is a 4-colored circle in the 

sphere. Suppose it contains colors 1, 2, 3, and 4. That 4-tuple must occur as a circle, but no other 

4-tuple is required in addition to that one. (4-color the equator and apply the remaining color to 

both open hemispheres.) 

 

Now for given k and m, let p equal the minimal number of k-circles. p(k,m) is a function and 

p(4,5) = 1. 

 

Problem: Compute p for arbitrary k and m. It yields the following Theorem: If k is the largest 

number of colors on a circle, there must be at least p k-colored circles  

 

 Note that by the way we have defined the term “colored circles,” they must correspond to 

p different combinations of colors. We know a lot about p, but still do not have a formula. 


